The roles of multiple UNC-40 (DCC) receptor-mediated signals in determining neuronal asymmetry induced by the UNC-6 (netrin) ligand.
نویسندگان
چکیده
The polarization of post-mitotic neurons is poorly understood. Preexisting spatially asymmetric cues, distributed within the neuron or as extracellular gradients, could be required for neurons to polarize. Alternatively, neurons might have the intrinsic ability to polarize without any preestablished asymmetric cues. In Caenorhabditis elegans, the UNC-40 (DCC) receptor mediates responses to the extracellular UNC-6 (netrin) guidance cue. For the HSN neuron, an UNC-6 ventral-dorsal gradient asymmetrically localizes UNC-40 to the ventral HSN surface. There an axon forms, which is ventrally directed by UNC-6. In the absence of UNC-6, UNC-40 is equally distributed and the HSN axon travels anteriorly in response to other cues. However, we find that a single amino acid change in the UNC-40 ectodomain causes randomly oriented asymmetric UNC-40 localization and a wandering axon phenotype. With UNC-6, there is normal UNC-40 localization and axon migration. A single UNC-6 amino acid substitution enhances the mutant phenotypes, whereas UNC-6 second-site amino acid substitutions suppress the phenotypes. We propose that UNC-40 mediates multiple signals to polarize and orient asymmetry. One signal triggers the intrinsic ability of HSN to polarize and causes randomly oriented asymmetry. Concurrently, another signal biases the orientation of the asymmetry relative to the UNC-6 gradient. The UNC-40 ectodomain mutation activates the polarization signal, whereas different forms of the UNC-6 ligand produce UNC-40 conformational changes that allow or prohibit the orientation signal.
منابع مشابه
UNC-6 (netrin) stabilizes oscillatory clustering of the UNC-40 (DCC) receptor to orient polarity
The receptor deleted in colorectal cancer (DCC) directs dynamic polarizing activities in animals toward its extracellular ligand netrin. How DCC polarizes toward netrin is poorly understood. By performing live-cell imaging of the DCC orthologue UNC-40 during anchor cell invasion in Caenorhabditis elegans, we have found that UNC-40 clusters, recruits F-actin effectors, and generates F-actin in t...
متن کاملGlypican Is a Modulator of Netrin-Mediated Axon Guidance
Netrin is a key axon guidance cue that orients axon growth during neural circuit formation. However, the mechanisms regulating netrin and its receptors in the extracellular milieu are largely unknown. Here we demonstrate that in Caenorhabditis elegans, LON-2/glypican, a heparan sulfate proteoglycan, modulates UNC-6/netrin signaling and may do this through interactions with the UNC-40/DCC recept...
متن کاملMAX-1, a Novel PH/MyTH4/FERM Domain Cytoplasmic Protein Implicated in Netrin-Mediated Axon Repulsion
The netrin UNC-6 repels motor axons by activating the UNC-5 receptor alone or in combination with the UNC-40/DCC receptor. In a genetic screen for C. elegans mutants exhibiting partial defects in motor axon projections, we isolated the max-1 gene (required for motor neuron axon guidance). max-1 loss-of-function mutations cause fully penetrant but variable axon guidance defects. Mutations in unc...
متن کاملExtracellular Matrix Regulates UNC-6 (Netrin) Axon Guidance by Controlling the Direction of Intracellular UNC-40 (DCC) Outgrowth Activity
How extracellular molecules influence the direction of axon guidance is poorly understood. The HSN axon of Caenorhabditis elegans is guided towards a ventral source of secreted UNC-6 (netrin). The axon's outgrowth response to UNC-6 is mediated by the UNC-40 (DCC) receptor. We have proposed that in response to the UNC-6 molecule the direction of UNC-40-mediated axon outgrowth is stochastically d...
متن کاملMIG-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in C. elegans.
To transmigrate basement membrane, cells must coordinate distinct signaling activities to breach and pass through this dense extracellular matrix barrier. Netrin expression and activity are strongly associated with invasion in developmental and pathological processes, but how netrin signaling is coordinated with other pathways during invasion is poorly understood. Using the model of anchor cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 183 3 شماره
صفحات -
تاریخ انتشار 2009